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The Principles of Calculus III

VII. Local Higher Order Approximation

• To Outline
• To Lectures
VII.1. Series

VII.1.1. Series of Functions and their Convergence
VII.1.2. Polynomial Approximation of Continuous Functions
VII.1.3. Power Series and the Radius of Convergence

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall the definition of a series of functions.
Recall the definition of a power series.
Recall the definition of radius of convergence.
Recognize some common convergent and divergent series of functions and power

series.
Recognize that statement of a simplified version of the Weierstrass Approximation

Theorem.

Application and Analysis (Analysis)
Use the comparison test, limit comparison test, M test, and simplified versions of

the root and ratio tests.
Use simplified versions of the root and ratio tests to determine the radius of con-

vergence of a power series.
Use the alternating series test to determine the convergence of an alternating series

and an alternating power series.

Evaluate and Create (Synthesis)
Estimate error terms for convergent alternating series.
Determine convergence using comparison tests.
Determine radius of convergence of a power series.

Summary.
This section presents the notion of convergence of a series as the convergence of the se-

quence of partial sums. This section is critical for the following section on Taylor series.
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This section also presents the polynomial approximation of continuous function, the Weier-
strass approximation theorem, as an example of a global approximation rather than a local
approximation. The study of the Weierstrass approximation theorem ties together students’
previous work (in exercises and worksheets) on local linear approximation of continuous func-
tions, expressing continuous piecewise linear functions as a sum of absolute value functions,
and the Babylonian approximation of the square root function.
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• To Outline
• To Lectures
VII.2. Higher Order Approximation

VII.2.1. Taylor Polynomials and Taylor’s Theorem
VII.2.2. Taylor Series
VII.2.3. Rigidity of Analytic Functions

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall the definition of a Taylor polynomial and of Taylor’s theorem.
Recall the meaning of higher order derivatives.
Recall the definition of the Taylor series for a function and the radius of con.
Recall that two functions that are analytic on an open interval if they are equal on

a convergent sequence in the open interval.

Application and Analysis (Analysis)
Calculate the Taylor series for a polynomial.
Calculate the Taylor series for a functions.
Use the second derivative test.
Determine the shape of a function based on concavity and extremal points (re-

visit the topic and emphasize non-algebraic functions as well as higher order
information and osculating circles).

Determine the radius of convergence of a Taylor series.

Evaluate and Create (Synthesis)
Determine the error from remainder terms in Taylor’s theorem.
Derive the main rigidity theorem for real analytic functions, that analytic functions

that are zero on a convergent sequence are identically zero.

Summary.
We begin our study of Taylor polynomials by studying the Taylor polynomial associated

to a polynomial function, where there are only finitely many non-zero terms. We then extend
this study to the study of Taylor polynomials and Taylor series for more general functions.
This section is critical for understanding the higher order approximation of functions, for
more accurately sketching functions, and for the approximations of integrals that will appear
later.
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• To Outline
• To Lectures
VII.3. Differentiating Series

VII.3.1. Term-by-term Differentiation
VII.3.2. Application of Series

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall sufficient conditions for term-by-term differentiation of a power series.
Recognize a linear higher order differential operator.
Recognize how a linear higher order differential operator acts on a power series.

Application and Analysis (Analysis)
Determine the series solutions to some simple higher order differential equations.

Evaluate and Create (Synthesis)
Justify the existence of antiderivatives in certain restricted settings using power

series.
Evaluate the limitations of using power series to define antiderivatives.

Summary.
It is important for students to go beyond learning about the formal properties of power

series and to understand some of their important applications. This chapter studies some
of their applications to the study of differential equations. This section also introduces
students to the important idea that not all function that arise in applications have a closed
form and that it is absolutely vital to be able to approximate functions, provide efficient
approximation schemes, understand rates of convergence, and, in modern applications, use
computing resources to work with functions that may be determined in complicated ways.

64



• Go back to “Contents”

• To Outline
• To Lectures
VII.4. The Geometry of Particle Motion Revisited

VII.4.1. Acceleration and Force
VII.4.2. Parameterizing Curves and Surfaces
VII.4.3. Constrained Motion
VII.4.4. Normal Forces

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall the definition of a higher order derivative of a curve.
Recall the meaning of force and acceleration for particles moving in the plane and

in three dimensional Euclidean space.
Recall the definition of the dot product.
Calculate the component of force, velocity, and acceleration in a given direction.

Application and Analysis (Analysis)
Determine paths of motion of particles restricted to planes given by graphs of

functions, including rotations around a point in the plane.
Determine paths of motion of particles restricted to surfaces given by graphs of

functions.
Determine paths of motion of particles restricted to surfaces given by general sur-

faces.
Calculate the equation of the tangent plane to a surface at a given point.
Determine the tangent and normal bundles of a surface.

Evaluate and Create (Synthesis)
Calculate the component of acceleration of a particle moving on a surface that is

tangent to the surface.
Calculate the normal acceleration of a particle whose motion is restricted to a

surface.

Summary.
This is a culminating section on the geometry of particle motion. It reinforces the ideas

needed for the final section of the course that deals with a simplified version of Green’s
theorem and looks ahead to the multivariable calculus courses.
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VIII. Integration

• To Outline
• To Lectures
VIII.1. Integration

VIII.1.1. The Fundamental Theorem of Calculus
VIII.1.2. The Integral Mean Value Theorem
VIII.1.3. Approximation Methods
VIII.1.4. Improper Integration

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall the Fundamental Theorems of Calculus I and II.
Recall the Integral Mean Value Theorem
Recognize when integrals are improper integrals.

Application and Analysis (Analysis)
Calculate the average value of a function on an interval.
Calculate the area between two curves in the plane.
Calculate the derivatives of integrals with variable bounds.
Use upper and lower Riemann sums, the midpoint rule, the trapezoid rule, and

Simpson’s rule to approximate the value of an integral and the area between
two curves in the plane.

Evaluate improper integrals.
Associate the integral test for convergence of a series to the use of the mean value

theorem in determining the convergence of a series.

Evaluate and Create (Synthesis)
Determine estimates for the error terms that arise from approximation of integrals.
Determine estimates for the error terms arising from improper integrals.

Summary.
We use the notion of the Riemann integral, already established in the first section of

the course, to make rigorous the notion of the area bounded by a Jordan curve given by
the graph of a Riemann integrable function. We prove the FTC I and II and use the
integral to prove the existence of an antiderivative for any continuous function. Practice
with differentiating integrals with bounds that are functions of a single real variable reinforce
students understanding of both the chain rule and the fundamental theorem of calculus.
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• To Outline
• To Lectures
VIII.2. Beyond the Elementary Functions

VIII.2.1. Arc Length
VIII.2.2. Using the Integral to Define Functions
VIII.2.3. Approximation and Application

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Define the arc length of a curve.
Recognize the difference in difficulty in determining the area bounded by an ellipse

and determining the length of an arc of a parameterized ellipse.
Identify some functions whose antiderivatives are not elementary.
Recognize a library of functions that are defined as definite integrals over a variable

domain.
Recognize an expanded library of functions.
Recall simple mollifiers, smoothing kernels, etc.

Application and Analysis (Analysis)
Key Point: Reinforce the FTC.
Calculate the arc length of a parameterized curve in the plane and in three dimen-

sional euclidean space.
Use the properties of an integrand to determine the properties of a function that is

defined as a definite integral over a variable domain.

Evaluate and Create (Synthesis)
Formulate approximation procedures to estimate the value of a function defined by

an integral (including elementary functions defined in this way).
Create tables of approximate values for functions that are determined by integrals

using computing technology.
Generate/Justify interpolation schemes to approximate the values at intermediate

points.
(In textbook for reference, but for use in a class as an enrichment activity or if time

permits) Establish the Leibniz rule and use it to derive values of certain definite
and improper integrals: Justify that

∫∞
−∞ e

−x2 dx =
√
π.

Summary.
There is an extreme an unfounded focus in current calculus courses on manipulating

elementary functions and explicitly determining the antiderivatives of functions that have
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elementary antiderivatives. Risch’s (semi)algorithm essentially solves the problem and so
practicing these techniques are essentially a vestigial topic in our calculus courses. However,
integration techniques are still important for manipulating functions that are not elementary,
determining their values and properties, and so on.

They key pedagogical reason for this section is to reinforce student understanding of
the FTC and see how it is different from the application of the mean value theorem in
determining antiderivatives. Students will recognize (but do not prove or discuss the details
in class) that there is a theorem that establishes that certain functions do not have elementary
antiderivatives (Liouville’s Theorem for Differential Algebras). Students will see that the arc
length of an arc of an ellipse is a first example, and a compelling example, of a function that
is not elementary. Students learn in this section that one of the main values of the Riemann
integral is for defining new functions that solve certain differential equations and have certain
properties. Every following section in this course will use such functions. For example,
students can later use the various integration methods (substitution, IBP) to manipulate
such functions (Gaussian integrals/the erf function, as a major example in probability; the
sinc function; elliptic integrals of the second kind, as the motivating question). They will
eventually see how the inverse trigonometric functions and logarithms may be defined by
integrals, and then be used to determine the trigonometric functions and exponentials is
a completely rigorous way. This will expand students’ understanding of functions, vastly
increase students’ reach in exploring examples, and give students the opportunity to learn
about the importance of computing technologies.
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• To Outline
• To Lectures
VIII.3. Techniques for Evaluating Antiderivatives

VIII.3.1. Integration by Parts
VIII.3.2. Bijections between Domains of Integration
VIII.3.3. Integration by Substitution

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Identify when integration by parts is useful for calculating antiderivatives.
Recognize bijections between domains of integration.
Identify when substitution is useful for calculating antiderivatives.

Application and Analysis (Analysis)
Calculate basic examples of definite and indefinite integrals that use integration by

parts.
Calculate basic examples of definite and indefinite integrals that use integration by

parts.
Calculate basic examples of definite and indefinite integrals that use substitution.

Evaluate and Create (Synthesis)
Determine whether or not a real valued function on a subset of the line is a valid

change of variables.
Justify the use of substitution in calculating definite and indefinite integrals.

Summary.
This section develops the main calculation tools in single variable integral calculus. We

use integration by parts to prove Taylor’s theorem with an integral remainder term. We
carefully study the substitution theorem for Riemann integrals, correcting the usual incorrect
presentation that views the integral as a directed integral and using instead the presentation
that is in line with the theorem in the multivariable setting. We pay particular attention
to identifying valid changes in variables. This approach is in line with the transformational
approach of the precalculus course.
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• To Outline
• To Lectures
VIII.4. Integrals Involving Rational Functions

VIII.4.1. Reciprocals of Real Irreducible Polynomials
VIII.4.2. Partial Fraction Decomposition
VIII.4.3. Antiderivatives of Rational Functions

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Identify polynomials that are irreducible in the real numbers.
Recall how to write a quadratic polynomial in scaled and shifted form.
Recall the change of variables needed to write the reciprocal of and quadratic poly-

nomial in the form 1
x2+1 .

Application and Analysis (Analysis)
Calculate the antiderivative of even powers of the cosine function.
Calculate the partial fraction decomposition of any rational fraction with a denom-

inator in factored form.

Evaluate and Create (Synthesis)
Calculate indefinite and definite integrals of any rational function with a denomi-

nator in factored form.
Calculate improper integrals involving rational functions.

Summary.
Antiderivatives of elementary functions are seldom elementary. It is important that in

teaching students integration techniques we make students aware of this fact. It is also im-
portant that they understand that calculating antiderivatives that are elementary functions
is, for our intents and purposes, a solved problem. They should use and be encouraged to
use symbolic solvers to do integration problems. They should also understand that large
classes of problems can be easily solved by hand. Integrals of rational functions are among
this class of problems. We teach the techniques with an emphasis on reinforcing students
ability to apply the principle of decomposition, that is, to reduce a single complicated prob-
lem into several problems of a simpler type. Students should be aware that this is why we
are teaching the topic at hand, not that it is independently important. Indeed, reduction of
a problem to a partial fraction decomposition is a critical aspect of Risch’s (semi)algorithm
that symbolic solvers employ.
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• To Outline
• To Lectures
VIII.5. Trigonometric and Hyperbolic Integrals

VIII.5.1. Trigonometric and Hyperbolic Functions
VIII.5.2. Trigonometric and Hyperbolic Integrals
VIII.5.3. Weierstrass substitution: A framework for trigonometric substitution
VIII.5.4. Trigonometric and Hyperbolic Substitutions

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall the definitions of the hyperbolic trigonometric functions and their relation-

ship to the circular trigonometric functions.
Recognize integrals that can be solved by trigonometric and hyperbolic trigonomet-

ric substitution.
Recall the birational equivalence between the unit circle and the y-axis.
Recall the birational equivalence between the right half of the hyperbola given by

x2 − y2 = 1 and the y-axis between −1 and 1.

Application and Analysis (Analysis)
Calculate basic examples of definite and indefinite integrals involving trigonometric

integrals.
Calculate basic examples of definite and indefinite integrals involving hyperbolic

trigonometric functions.

Evaluate and Create (Synthesis)
Justify the use of the Weierstrass substitution and the use of its hyperbolic analog.
Formulate more advanced trigonometric and hyperbolic trigonometric substitu-

tions, where more careful attention needs to be paid to the domain and ranges
of the functions, to calculate definite and indefinite integrals.

Summary.
This section explores a general framework for trigonometric and hyperbolic trigonometric

substitution from a transformational viewpoint. Often presented as a “sneaky” trick, the
Weierstrass substitution is well motivated and comes from the birational equivalence of the
circle and the y-axis. It identifies all rational points on the unit circle except (−1, 0) with the
rational points on the y-axis and gives a simple way of determining all Pythagorean triples. A
similar transformation exists for the hyperbola given by the locus of points satisfying x2−y2 =
1. These transformations are very useful for evaluating complicated integrals and more
naturally motivates the derivations of the anti-derivatives of the reciprocal trigonometric
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functions. Studying these problems and the rational points on these curves opens the door
for students to study rational points on elliptic curves, a topic that is not only important in
its own right as a part of algebraic geometry, but also one that has become very important
in computer science and cryptography.

The key point is that students will begin to understand that progress in mathematics is
nonlinear and that exploration of ideas for their own sake in some areas can lead to startling
applications in other areas. It also helps students to understand that one should seek to
generalize ideas in order to solve broader classes of problems. Many isolated tricks can solve
specific integration problems more easily and more efficiently, but we are generally searching
for frameworks that solve all problems of a given type.

This section reflects our overall theme of avoiding highly specialized tools that give only
minor advantages and have a narrow range of applications in favor of approaches that are
general, powerful, and interesting in their own right.
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• To Outline
• To Lectures
VIII.6. Integration of Scalar Quantities

VIII.6.1. Applications of Hyperbolic Functions
VIII.6.2. Application of Symmetry Principle: Area and Volume Integrals
VIII.6.3. Application of Symmetry Principle: Surface Area
VIII.6.4. Work Integrals

Learning Goals.

Students will be able to:

Remember and Understand (Recall)
Recall the difference between the differential equations that govern the motion of

ballistics with and without air resistance.
Match sketched regions of the plane to planar regions given by the intersection of

feasible sets.
Identify symmetries of surfaces of revolution and the volumes they bound.
Recall the equation of the infinitesimal surface area element for a surface of revo-

lution.
Recall the equation of the infinitesimal volume element for a surface of revolution.
Recall the definition of work done by a force field.

Application and Analysis (Analysis)
Calculate areas bounded by polar curves using symmetry.
Calculate the area bounded by general planar curves using a simplified form o f

Green’s theorem.
Calculate the work done by a force field in moving a particle from one point in the

plane or three dimensional Euclidean space to another.

Evaluate and Create (Synthesis)
Justify using Grönwall’s inequality the uniqueness of the solution of the differential

equation for describing air resistance.
Simulate the differences in ballistic motion with and without air resistance and

numerically approximate the differences.
Calculate the surface area of a surface of revolution.
Calculate the volume bounded by a surface of revolution.
Justify a simplified version of Green’s theorem for certain vector fields.
Determine the area of a region determined by a Jordan curve with a continuously

differentiable parameterization.

Summary.
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Develop mathematical models for studying ballistics with wind resistance. We solve the
problem of ballistics with air resistance as a capstone topic.

Study the areas bounded by polar curves by identifying “infinitesimal” area elements that
are sectors of circles rather than rectangles. The topics of this section involving surfaces of
revolution are rather standard, however, we pay particular attention to the identification of
symmetries of surfaces of revolution to identify appropriate infinitesimal surface area and
volume elements.

We conclude the course by calculating the area bounded by a continuously differentiable
Jordan curve. This is also a capstone topic. The main point is that for vector fields 1

2〈−y, x〉,
〈−y, 0〉, or 〈0, x〉 if ∆ is a triangle and γ : [0, 1]→ ∆ is a counterclockwise oriented parame-
terization that is continuously differentiable at all but finitely many points, then the area of
∆ is equal to

∫ 1
0 F (γ) · γ′(t) dt. The proof of Green’s theorem for such vector fields requires

only the tools that we have developed and solves an important and ancient problem.
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The Principles of Calculus III

Lecture 1
VII. Local Higher Order Approximation

◦ VII.1. Series
VII.1.1. Series of Functions and their Convergence
VII.1.2. Polynomial Approximation of Continuous Functions

Lecture 2– 3
VII.1.3. Power Series and the Radius of Convergence

Lecture 4
◦ VII.2. Higher Order Approximation

VII.2.1. Taylor Polynomials and Taylor’s Theorem

Lecture 5– 6
VII.2.2. Taylor Series
VII.2.3. Rigidity of Analytic Functions

Lecture 7
◦ VII.3. Differentiating Series

VII.3.1. Term-by-term Differentiation

Lecture 8
VII.3.2. Application of Series
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Lecture 9
◦ VII.4. The Geometry of Particle Motion Revisited

VII.4.1. Acceleration and Force
VII.4.2. Parameterizing Curves and Surfaces

Lecture 10
VII.4.3. Constrained Motion
VII.4.4. Normal Forces

Lecture 11
VIII. Integration

◦ VIII.1. Integration
VIII.1.1. The Fundamental Theorem of Calculus
VIII.1.2. The Integral Mean Value Theorem

Lecture 12– 13
VIII.1.3. Approximation Methods

Lecture 14
VIII.1.4. Improper Integration

Lecture 15– 16
◦ VIII.2. Beyond the Elementary Functions

VIII.2.1. Arc Length
VIII.2.2. Using the Integral to Define Functions
VIII.2.3. Approximation and Application

Lecture 17
◦ VIII.3. Techniques for Evaluating Antiderivatives

VIII.3.1. Integration by Parts
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Lecture 18
VIII.3.2. Bijections between Domains of Integration

Lecture 19
VIII.3.3. Integration by Substitution

Lecture 20
◦ VIII.4. Integrals Involving Rational Functions

VIII.4.1. Reciprocals of Real Irreducible Polynomials
VIII.4.2. Partial Fraction Decomposition
VIII.4.3. Antiderivatives of Rational Functions

Lecture 21
◦ VIII.5. Trigonometric and Hyperbolic Integrals

VIII.5.1. Trigonometric and Hyperbolic Functions

Lecture 22
VIII.5.2. Trigonometric and Hyperbolic Integrals

Lecture 23
VIII.5.3. Weierstrass substitution: A framework for trigonometric substitu-

tion

Lecture 24
VIII.5.4. Trigonometric and Hyperbolic Substitutions

Lecture 25
◦ VIII.6. Applications of Integration

VIII.6.1. Applications of Hyperbolic Functions

Lecture 26
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VIII.6.2. Application of Symmetry Principle: Area and Volume Integrals

Lecture 27
VIII.6.3. Application of Symmetry Principle: Surface Area

Lecture 28
VIII.6.4. Work Integrals
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